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Мета – детальне вивчення шляхів керування нелінійними 3- та 4-магнонними процесами в одно- 
та багатошарових магнітних наноструктурах та розробка способів використання досліджених 
закономірностей для розширення функціональних можливостей наноелементів спінтроніки.

МЕТА / ЗАВДАННЯ 3

Задачі проекту
А. Встановлення загальних закономірностей: 

1) зміни інтенсивності та правил відбору тримагнонних процесів у магнітних наноелементах у 
насиченому стані при малих змінах статичного стану від рівноважного; 

2) впливу міжмодової гібридизацієї у двошарових спінтронних наноструктурах на  
чотиримагнонні процеси;

3) тримагнонного розсіяння біжучих спінових хвиль на локалізованих модах.
Б. Застосування:

4) вивчення впливу зміни інтенсивності чотиримагнонних процесів на динаміку спінтронних 
наноосциляторів та можливості керування осциляторами;

5) застосування тримагнонних процесів для підсилення, детектування чи/та інших 
функціональних операцій для потреб магноніки.



  

Встановлено, що збурення вихрового стану скасовують заборону на 
невирорджені тримагнонні процеси. Збурення у площині (зсув ядра вихору) 
є набагато більш ефективним методом впливу на тримагнонні процеси. 

ТРИМАГНОННЕ РОЗСІЮВАННЯ У МАГНІТНОМУ ВИХОРІ 4

Відомо, що тільки невиро-
джені процеси дозволені у 
незбуреному вихорі
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Розглянуті процеси:                                        та
В ідеальному вихорі – заборонені. Відповідають за нелінійне затухання та 2ω.
         Перпендикулярне поле збурення               Поле збурення в площині



  

У незбуреному стані моди строго 
симетричні (С) або антисиметричні (А) 
відносно осей наноточки. 
Правила відбору тримагнонних 
процесів: Σνnν,x та Σνnν,y – непарні.

НАМАГНІЧЕНА В ПЛОЩИНІ НАНОТОЧКА 5

Вплив збурень на процес (ν + ν) →2
Симетрія моди 2

Поле збурення (С, С) (А, С) (С, А) (А, А)

Без збурення - - - +
By, Bz однорідне/симетр. + слабк. слабк. +
ΔBx(x) антисиметричне - - + +
ΔBx(y) антисиметричне - + - +
Bx(x,y) антисиметричне + + + +
By(x) або Bz(x) антисим. - + - +
By(y) або Bz(y) антисим. - - + +
By(x,y) / Bz(x,y) антисим. - - - +
ІВДМ - + - +

   Спектр СХ мод             Профілі мод

Систематизовано вплив збурень всіх можливих 
симетрій на вироджений тримагнонний процес.
Більшість збурень мають селективний вплив.



  

У незбуреному стані моди схожі на 
попередній випадок намагніченої у 
площині наноточки.
Однак тримагнонні процеси заборонені 
взагалі.

ПЕРПЕНДИКУЛЯРНО НАМАГНІЧЕНА НАНОТОЧКА 6

Вплив збурень на процес (1+1) →ν   Спектр СХ мод              Профілі мод

2 групи мод – повністю симетричні/ 
антисиметричні та змішаної симетрії – які 
чутливі до різних збурень. В середині групи 
немає селективності.

Величина збурень 10 мТл, стала ІВДМ Db/h = 0.05 мДж/м2.



  

Синтетичний антиферомагнетик 
(САФ) може існувати у різних станах: 
паралельному (П), антипаралельному 
(АП), і спін-флоп (СФ), у тому числі 
існує бістабільність (гістерезис).
Істотно різна симетрія полів 
розсіяння дозволяє використовувати 
зміну стану САФ (імпульсом 
поля/струму) для керування 
тримагнонними процесами у ВШ

МОЖЛИВА НАНОРОЗМІРНА РЕАЛІЗАЦІЯ ЗБУРЕНЬ 7

Наностовпчик 
САФ / ВШ

(вільний шар)

Поля розсіяння САФ у ВШ
у різних станах САФ

Вх – (С,С)
Вy – (А,С)

Малі поля
розсіяння

Змішана 
симетрія 
(ні С, ні АС)

Інші можливі альтернативи:
перехід вихор - насичений стан,
одно-/багатодоменний стан,
тощо.



  

ІВДМ чинить сильний ефект на тримагнонні процеси = 
Σ прямого внеску + непрямого через зміну статичного стану.
ІВДМ присутня у більшості спінтронних структур →можливі 
ускладнення в інтерпретації результатів та керуванні.  
Електрично керована ІВДМ → новий шлях керування 

ВПЛИВ ВЗАЄМОДІЇ ДЗЯЛОШИНСЬКОГО-МОРІЯ 8

Перпендикулярно намагнічена наноточка

Інтерфейсна (міжфазна) взаємодія Дзялошинського-
Морія (ІВДМ) – антисиметрична обмінна взаємодія, 
присутня на інтерфейсах феромагнетик-важкий метал

Зміна 3М коефіцієнтів Статичний стан

Профілі мод

Магнітний диск у вихровому стані
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Загальний тренд ефективності 3М розсіяння V ~ sin[2φ].
Амплітуда розсіяної хвилі обернено пропорційна до проекції 
групової швидкості розсіяної хвилі → додаткова кутова залежність.
Встановлено принципову роль інтерференції парціальних хвиль 
→сильна чутливість до частот СХ = спосіб ефективного керування 

3-МАГНОННЕ РОЗСІЯННЯ СПІНОВОЇ ХВИЛІ НА КРАЙОВІЙ МОДІ 9

Ефективний тримагнонний коефіцієнт

Залежність від кута падіння           від частоти крайової моди
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КЕРУВАННЯ 4-МАГНОННИМИ ПРОЦЕСАМИ 10

Можливий процес – сулівська 
нестійкість 2-го порядку

Збурення (нахил поля від нормалі) 
сильно змінює ступінь 
гібридазації мод між шарами.
Наслідок: зміна 4-магнонного 
коефіцієнту у понад 2 рази при 3º. 

Гібридизація мод – альтернатива 
для керування 4М процесами.
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ЗАСТОСУВАННЯ: МАГНОННИЙ ТРАНЗИСТОР 11

Числовими методами продемонстровано роботу 
магнонного транзистора на основі стимульованого 
тримагнонного розщеплення. Для змішування сигналу та 
накачки використовується магнонний відгалужувач, а для 
фільтрації холостих магнонів та накачки на стоці 
транзистора – двосмуговий магнонний кристал. Досягнуто 
коефіцієнт підсилення = 9. Фаза стокових магнонів 
залежить тільки від фази вихідних магнонів.

Коефіцієнт підсилення

Схема 3М процесу Ефективність 3М процесу



  

ВПЛИВ 4М ВЗАЄМОДІЇ НА ДИНАМІКУ НАНООСЦИЛЯТОРІВ 12

Модель двомодового осцилятора
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Змінюючи міжмодову взаємодію можна 
реалізувати різні режими генерації

Двомодовий режим – можлива 
синхронізація кожної з мод.
Бістабільний режим – динамічне 
перемикання режиму генерації 
(моди і, відповідно, частоти) 
імпульсом синхроніхзації.



  

ВИСНОВКИ

➢ продемонстровано можливість ефективного керування інтенсивністю та правилами відбору 
тримагнонних процесів розсіяння за допомогою керованого порушення симетрії магнітного 
стану; для наноточок у насиченому стані встановлено відповідність симетрії мод, які беруть 
участь у тримагнонному процесі, до симетрії керівного збурення; 

➢ розвинена теорія тримагнонного розсіяння об'ємних спінових хвиль на крайових модах, 
встановлена чутливість цього процесу до умов на границі, що відкриває шлях керування ним;

➢ продемонстровано функціональність підсилювача спінових хвиль на основі вимушеного 
тримагнонного розсіяння; 

➢ встановлено, що гібридизація мод у багатошарових наноструктурах може бути ефективним 
механізмом керування чотиримагнонними процесами і, відповідно, параметричною 
нестійкістю другого порядку;

➢ встановлено вплив нелінійної міжмодової взаємодії на динаміку спінтронних осциляторів, 
сформульовані умови реалізації одно-, двомодового та бістабільного режимів генерації, а також 
динамічного перемикання генерації. 
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