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OBJECTIVE & TASKS 3
I

The objective is a detailed study of ways to control nonlinear 3- and 4-magnon processes in single- and
multilayer magnetic nanostructures and the development of methods for using the studied rules to
expand the functional capabilities of spintronics nanodevices.

Tasks

A. Establishment of general regularities:
1) changes in the intensity and selection rules of three-magnon processes in magnetic nanoelements
in a saturated state upon small changes in the static state from equilibrium;
2) the influence of intermode hybridization in two-layer spintronic nanostructures on four-magnon
processes;
3) three-magnon scattering of propagating spin waves on localized modes.

B. Applications:
4) studying the effect of changes in the intensity of four-magnon processes on the dynamics of
spintronic nano-oscillators and the possibility of controlling oscillators;
5) application of three-magnon processes for amplification, detection, and/or other functional
operations for the needs of magnonics.



THREE-MAGNON INTERACTION IN VORTEX-STATE DISK 1
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We found that perturbations of the vortex state allows for degenerate three-
magnon processes to happen. Perturbations in the plane (shifting the vortex core)
are a way more efficient to influence three-magnon processes.
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OUT-OF-PLANE MAGNETIZED NANODOT 6
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— are sensitive to different perturbations. There is
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NANOSCALE REALIZATION 7
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Synthetic antiferromagnetics (SAF) can
exist in different states: parallel (P),
antiparallel (AP), and spin-flop (SF),
including bistability (hysteresis).

Significantly different symmetry of
stray fields allows using SAF state
change (by field/current pulse) to
control three-magnon processes in FL.

Other possible alternatives:
transition vortex - saturated state,
single-/multi-domain state, etc.



EFFECT OF DZYALOSHINSKII-MORIYA INTERACTION
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THREE-MAGNON SCATTERING OF BULK SW ON EDGE MODE 9
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General trend of three-magnon interaction V ~ sin[2¢].

The amplitude of the scattered wave is inversely proportional to the
projection of its group velocity — additional angular dependence.

The fundamental role of partial wave interference has been established
— high sensitivity to frequencies SW = a method of effective control



CONTROLLING FOUR-MAGNON PROCESSES
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APPLICATION: MAGNON TRANSISTOR
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The operation of a magnon transistor based on stimulated
three-magnon splitting has been demonstrated using numerical
methods. A spin-wave coupler is used to mix the signal and
pumping, and a two-band magnon crystal is used to filter idler
magnons and pumping at the transistor drain. A gain
coefficient of 9 has been achieved. The phase of the drain
magnons depends only on the phase of the output magnons.



INTERMODE COUPLING IN SPIN-TORQUE OSCILLATOR DYNAMICS 12
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CONCLUSIONS 13
I

» controlled symmetry breaking of the magnetic state is shown to be an efficient tool for the control of
the intensity and selection rules of three-magnon scattering processes; for nanodots in a saturated
state, the correspondence of the interacting modes symmetry to the symmetry of the perturbation,
affecting their three-magnon coupling, has been established;

> a theory of three-magnon scattering of bulk spin waves on edge modes has been developed, and the
sensitivity of this process to boundary conditions has been established, opening the way for its
control;

> the functionality of a spin wave amplifier based on stimulated three-magnon scattering has been
demonstrated;

> mode hybridization in multilayer nanostructures is shown to be an efficient mechanism for controlling
four-magnon processes and, respectively, second-order parametric instability;

> nonlinear intermode interaction is shown to be crucial parameter determining the generation regime
of spin-torque oscillators; the conditions fro the realization of single-, dual-mode, and bistable
generation regimes, as well as dynamic switching of generation, have been formulated.



PUBLICATION LIST 14
N

Book chapters:

1. R. Verba, J. Kharlan, V. Borynskyi, D. Slobodianiuk, A. Etesamirad, I. Barsukov, Controlling multimagnon
interaction in magnetic nanodots and spintronic nanostructures // In: I. Vladymyrskyi, et al. (eds.) Functional
Magnetic and Spintronic Nanomaterials. NATO SPS Series B (Springer, Dordrecht, 2024), P. 8§9-132.

Articles:
1. X. Ge, R. Verba, P. Pirro, A. V. Chumak, Q. Wang, Nanoscaled magnon transistor based on stimulated three-
magnon splitting, Appl. Phys. Lett. 124, 122413 (2024).

2. K. Davidkova , K. Levchenko, F. Bruckner, R. Verba, F. Majcen, Q. Wang, M. Lindner, C. Dubs, V. Vlaminck, J.
Klima, M. Urbanek, D. Suess, and A. Chumak, Nanoscale spin-wave frequency-selective limiter for 5G technology,
Phys. Rev Appl. 23, 034026 (2025).

3. V. Borynskyi, J. Kharlan, and R. Verba, Effect of interfacial Dzyaloshinskii—Moriya interaction on three-magnon
processes in thin magnetic nanodots, Low Temp. Phys. 51, 986 (2025).

4. D. Slobodianiuk, A. Slavin, V. Tyberkevych, and R. Verba, Auto-oscillations and phase-locking in a multimode
spin-torque oscillator, Low Temp. Phys. 51, 804 (2025).

5. J. Kharlan, R. Verba, K. Sobucki, P. Gruszecki, M. Krawczyk, Three-magnon scattering of spin wave on edge-
localized mode in thin ferromagnetic film, Phys. Rev. B 112, 214438 (2025).

Ph.D. theses:

1. Polynchuk P. Yu. Relaxation-free switching of magnetic memory cells based on multilayer nanosystems with
antiferromagnetic coupling: Ph. D. thesis, specialty 104 - Physics and astronomy, Institute of Magnetism. — Kyiv,
2024.



PUBLICATION LIST 15
N

Conference abstracts:

1. K. Sobucki, J. Kharlan, R. V. Verba, et al., Nonlinear Effects in Inelastic Scattering of Spin-Wave Beams on
Localized Modes for Controlling Propagation of Scattered Beams / INTERMAG 2024 (Rio de Janeiro, Brazil, 2024).
2. Yu. Dzhezherya, P. Polynchuk, A. Kravets and V. Korenivski, Ultrafast inertia-free switching of double magnetic
tunnel junctions // «Topical problems of semiconductors physics» (Drohobych, Ukraine, May 27-31, 2024).

3. R. Verba, J. Kharlan, V. Borynskyi, D. Slobodianiuk, A. Etesamirad, I. Barsukov, Controlling multimagnon
processes in magnetic nanostructures // «Condensed matter & low temperatures» (June 3-7, 2024, online).

4. J. I. Kharlan, V. Yu. Borynskyi, A. Etesamirad, I. Barsukov, R. V. Verba, Symmetry breaking as an efficient tool
for controlling three-magnon scattering in nanomagnets // NANO-2024 (21-24 August 2024, Uzhgorod, Ukraine).

5. R. Teslia, O. Kolezhuk, I. Gerasimchuk, Current-driven dynamics of domain walls in low-dimensional helimagnets
// International Workshop on Unconventional Magnetism in Quantum Materials (July 14-15, 2025, Kyiv, Ukraine).

6. A. Hamadeh, R. Verba, D. Slobodianiuk, V. Borynskyi, G. De Loubens, P. Pirro, O. Klein, Coherent magnon
interactions and multitone microwave emission in spintronic nano-oscillators: bridging nonlinear dynamics and phsa-
locked synchronisation // Magnonics 2025 (Cala Millor, Mallorca, Spain, July 28 - August 01, 2025).

7. P. Yu. Polynchuk, Yu. 1. Dzhezherya, A. F. Kravets, V. Korenivski, Ultrafast inertia-free switching of double
magnetic tunnel junctions // NANO-2025 (August 20-23, 2025, Bukovel, Ukraine).

8. D. V. Slobodianiuk, R. V. Verba, Multimode generation regime in spin-torque nano-oscillator // NANO-2025.



	Слайд 1
	Слайд 2
	Слайд 3
	Слайд 4
	Слайд 5
	Слайд 6
	Слайд 7
	Слайд 8
	Слайд 9
	Слайд 10
	Слайд 11
	Слайд 12
	Слайд 13
	Слайд 14
	Слайд 15

